Inside Logitech: How gaming mice are built and tested


Inside Logitech: How gaming mice are built and tested

Logitech does not just test mice and keyboards. It tortures them. It mashes keys 13 times per second, 24 hours a day, for two months straight. When the company needs to test the range and directionality of a wireless mouse receiver, it builds an anechoic chamber to seal away every errant wireless signal and precisely measure the receiver’s radiation pattern. When Logitech’s engineers designed the G402 Hyperion Fury gaming mouse to accurately track at speeds of more than 450 inches per second, it built a spring-powered arm to whiplash the mouse so fast it would malfunction.

The arm didn’t move fast enough, so they built a bigger one.

Every company that makes PC hardware—peripherals like mice and keyboards, or components like fans and hard drives—does some degree of testing, but it’s rare for us to get an inside look at what that testing really looks like, or to talk to the engineers doing the work. When a mouse’s switches are supposedly rated for two million clicks, we don’t know how rigorously that claim was tested. If a keyboard can survive 60 million keystrokes, will the keys still feel just as good after all that abuse?

Last week, Logitech invited a group of journalists to its headquarters in Lausanne, Switzerland to see its testing facilities firsthand. Though Logitech has offices all over the world, it’s in Switzerland, where the company was founded in 1981, that Logitech does its most rigorous testing and designs its most crucial components: mouse sensors.

Unlike most press events, which are organized to promote a specific product, Logitech invited us to Switzerland to observe, learn, and talk to engineers about, more or less, whatever we wanted. They weren’t really trying to sell us on their latest hardware, I realized—they were trying to sell us on Logitech Gaming itself. For years, Logitech has been doing what is almost certainly the most rigorous product testing and most advanced sensor design in the world. It just wasn’t telling anyone about it.

It’s significant that Logitech is showing us its testing now, because in 2014, Logitech has released its best, and most noteworthy, mouse since 2005’s legendary MX518. If you don’t care about the history of gaming mice, jump on over to the next page for photos of Logitech’s labs and insight into how they develop and test their mice and keyboards. You can also see the same testing equipment in action in the video above.

Inside Logitech: How gaming mice are built and tested

The rebirth of Logitech Gaming

“From 2005, to about 2010, we were focused on a number of different businesses, as well as, and especially, gaming,” said Vincent Tucker, the director of Logitech Gaming, in an introductory presentation. “However, about 2009, 2010, we lost our focus, lost our way. There were a lot of other opportunities to take advantage of. We got into the tablet market, the Bluetooth speaker market. It’s our bad, really, for taking our eye off the ball. But I think you’ll find today that our eye is back on the ball.”

Though no one at Logitech dwelled on the company’s mistakes, I thought this humble admission was important. For years, Logitech was the undisputed king of gaming mice. The MX518 sold 16.4 million units over its lifetime, said Tucker, which makes it one of, if not the, best-selling gaming mice of all time. But from 2009 to 2013, Logitech Gaming did little to innovate. It released the G500, and the G500s, and a number of other models, with only minor changes and improvements.

Meanwhile, Razer attracted loyal fans with the Deathadder. Steelseries made the definitive ambidextrous mouse with the Sensei. Against Razer and Steelseries and Roccat and Mionix and Corsair and Mad Catz and all the rest, Logitech was the old guard, and its mice didn’t look much different in 2013 than they did in 2005.

In 2014, that finally changed. Logitech released the G502 Proteus Core in January, with a brand new sensor never used in another gaming mouse (most gaming mice have been using customized versions of the same handful of sensors that are now years old, and are often being pushed beyond their intended limits).

Inside Logitech: How gaming mice are built and tested

“One of my original design briefs to the people who did the actual form [of the G502] was: I want this to feel like the G500s, I want it to feel like I’m holding my own friend, but I open my eyes and I’m looking at the future instead,” said Chris Pate, senior product manager at Logitech Gaming. Pate has worked at Logitech for nearly his entire career. Outside of the engineers actually designing sensors at Logitech, it’s probably hard to find anyone who can speak about gaming mice as knowledgeably as Pate. With the G502, Pate said, “the goal was to develop a product that is familiar and consistent with what the gamers who are fans of the existing products like, and hopefully draw new people in with the better features, better responsiveness and nicer design.”

Next came the G402 Hyperion Fury, which creatively combines a highly accurate low-speed sensor with an accelerometer to handle the high movement speeds of FPS players. Finally, there’s the G302 Daedalus Prime, light and barebones and built with shallow left and right buttons for fast-clicking MOBA players. Logitech also built a new mechanical key switch for the G910 Orion Spark keyboard and wisely dropped its expensive integrated LCD screen, opting instead for a free companion smartphone app. Even the names, silly and garish though they might be, are a nice change from Logitech’s typically stolid product numbers.

Logitech didn’t suddenly wake up in 2014 and decide to make great gaming mice again, then whip them up inside a year, of course. The G502, G402, and G302 have been the culmination of a couple years of work, a response to that turn-of-the-decade loss of focus Tucker mentioned.

“We were already working on the next generation of stuff when we put out the 500s,” Pate said. “Those were products that we are still proud of. We still believe they were the right thing to do.” Logitech used the G500s, 400s etc. to relaunch and rebrand its gaming peripherals under the Logitech G name, explained Pate. “We were trying to improve. We weren’t trying to disrupt.”

I don’t know if Logitech has disrupted the mouse market in terms of sales, but with the G402’s accelerometer “Fusion Engine” and the G502’s sensor, it’s certainly pushing gaming mice technology ahead more than any other company in the field. Logitech’s labs in Switzerland are a testament to that fact, because when Logitech builds a new mouse, it often has to build a new piece of equipment to push it to its limits.

Inside Logitech: How gaming mice are built and tested

I spent a day touring Logitech’s headquarters in Lausanne, Switzerland, which are located right next to the campus of EPFL, an internationally renowned engineering school. A couple floors above ground, there’s a room packed with keyboards and mice being hammered on, tested for reliability for hours on end. Underground, however, is where the real magic happens—that’s where Logitech’s labs house sophisticated machines built to test the sensors its engineers design.

Before we saw the second example below, used to test the mice movements of up to 500 inches per second, Maxime Marini, Logitech’s senior director of engineering, had this to say about Logitech’s lab:

“Today, if you buy your mouse from a competitor, you will see some spec on the box. So, that spec, it will come from where? From the chipmaker. Now, the question is, where is the chipmaker getting that spec? This machine…They really come here to test it, because they can’t test it themselves. We are enabling the full industry. We are setting the standard.”

Marini’s proud, but after touring Logitech’s headquarters, it’s easy to see why. I haven’t been inside the facilities at companies like Razer or Steelseries, or the sensor makers like Pixart, which Logitech works with. They may have some equipment similar to what Logitech has in its Swiss labs. But the machine used to test the G402 below is certainly one-of-a-kind, because no one aside from Logitech has built a gaming mouse that comes close to tracking at 500 inches per second.

Springloaded arm for testing tracking speed

Inside Logitech: How gaming mice are built and tested

The G402’s “Fusion Engine” pairs a sensor accurate at low inch-per-second movement speeds with an accelerometer that’s very accurate at high movement speeds.

Said senior engineer François Morier: “We had to make an arm that was spring operated, because at the beginning of the project we just wanted to have a very basic arm to validate, to be able to break the speed of the optical sensor and to see the transition between optic and accelerometer to make sure that this happens correctly. This is just moving the mouse. The speed here is about 250, 280 ips. It’s sufficient to break the speed of the optical sensor, but it is not sufficient to [break the accelerometer]. So we had to create another one. It has been used to validate that the mouse is the fastest in the world.”

Air pressure arm for testing tracking speed

Inside Logitech: How gaming mice are built and tested

Check out the video on the first page (or jump to it on Youtube) to see this one in action.

Here’s the second arm Logitech built to test the G402 (and other mice, but mostly the G402’s sensor-to-accelerometer hand-off). The screen to the left charts data from the mouse in real-time, and shows the sensor losing accuracy (and then regaining it) as the mouse moves too quickly and then slows down again. In the middle, the accelerometer takes over, with no delay in the hand-off.

“They were kind of disappointed with me when I told them [the first arm] wasn’t going fast enough,” senior product manager Chris Pate said with a laugh. Where the first arm topped out at around 280 inches per second, this one tested the G402 to about 500 inches per second. The mouse is actually capable of tracking at even faster speeds, according to Logitech; this arm still wasn’t enough to overcome its tracking. While the arm can move at faster speeds when it’s charged with more air pressure, more pressure causes vibration which throws off the results.

Turntable for surface testing speed, acceleration, and latency

Inside Logitech: How gaming mice are built and tested

François Morier: “This setup is a turntable that has been designed and used to validate maximum speed, maximum acceleration, as well as latency. With this machine we can change the disk so we can move different kinds of surfaces. The performance of the sensor is very dependent on the surface. Especially depending on the optical configuration, the angle of illumination, you’ll be able to work on shiny surfaces or not. This depends on your optical configuration. With our new designs we try to make the surface calibration, the ability to work on different surfaces, as large as possible.” 

The G502 includes a surface tuning feature to fine-tune the sensor for a specific mouse pad or desk. When the mouse is tuned to a particular surface, it won’t track as well on another surface, but it will be able to track accurately at higher inches per second and support a lower lift-off distance on your surface of choice.

Mouse acceleration testing

Logitech had a similar turntable machine, which I forgot to grab a photo of, built to test mouse acceleration. The mouse would be quickly swiped in one direction, then slowly returned to its starting position. The machine was hooked up to a system running Counter-Strike; it would fire off a shot, then show that after the fast swipe and slow return, the cursor lined up on the exact same spot.

Acceleration is one of the big no-nos of gaming mice; when a sensor exhibits acceleration, that means that the cursor will move a different distance based on the speed you move the mouse. Swipe fast and the cursor moves further (or not as far) as a slow swipe. That inconsistency can make it hard to judge exactly where your pointer will be. Logitech proudly proclaims the new G502 exhibits absolutely no acceleration.

Chris Pate, referring to the test machine: “This specific mouse was collected from a user who was experiencing what he felt to be inaccuracy or acceleration. So I contacted him, got the mouse back, got him a different one, shipped it off to François to validate. Because it’s not that we’re trying to prove that anybody’s wrong. We want to make sure that everything we do meets the standards that we’ve set. So in the event that there was something wrong with the mouse, we collected it to make sure, and we validated that it actually does perform as we’ve specified. We narrowed it down to one of two things. Either the USB port that he was using, or the fact that he was removing the weight door to reduce the weight because he wanted a lighter mouse, and if you remove the weight door it removes one of the feet, and you can actually pick the sensor up a little bit when you’re swiping it.”

Glass tracking

Inside Logitech: How gaming mice are built and tested

One of Logitech’s non-gaming mice tracking on a glass. Morier and his other engineers spent months developing a sensor to that could track on glass surfaces. It’s built for office mice, not gaming mice; it doesn’t track at the speeds or DPI levels gamers want, but is a great technology for office workers with glass desks.

Keyboard reliability testing

Inside Logitech: How gaming mice are built and tested

Logitech’s keyboard testing machine presses 13 keys per second to ensure that its new Romer-G switches can stand up to 70 million keypresses. After 70 million presses, says Logitech, the keys must be within a 30% threshold of their original keyfeel. Part of the G910 Orion Spark’s reliability comes from a dual contact design. Unlike the Cherry switches that the vast majority of mechanical keyboards use, the Romer-G switches have two metal contacts that register a keypress, not one. If one of those contacts breaks (or is taken out of commission by dirt or soda) the keyboard will continue to function normally.

Anechoic chamber

Inside Logitech: How gaming mice are built and tested

Logitech built an anechoic chamber to develop its wireless mice. In order to accurately study the radiation patterns of its wireless mice—to ensure that the mouse will remain in contact with its receiver, regardless of its position relative to the computer—they had to cancel out interfering signals from Wi-Fi networks and other radio waves. Mice, laptops with attached receivers, etc. are placed on the light blue platform for analysis.

After touring through Logitech’s facilities, I spent about two hours talking to Pate and Morier about all things gaming mice. Look for more coverage from my trip to Logitech, including a deep dive into mouse sensors, in the near future.